
Taking the DNS for a Walk; NSEC3 Prevalence and
Recoverability

Harrison Mitchell
whitepapers@harrisonm.com

Abstract—Machines querying for non-existent names within
the Domain Name System (DNS) are met with a Non-Existent
Domain (NXDOMAIN) error. Within the context of DNS Security
Extensions (DNSSEC), an authenticated negative answer is re-
turned containing both the lexicographically prior and following
existent names within the Next Secure (NSEC) DNS record.
NSEC provides these values in plaintext allowing for linear DNS
zone walking. NSEC3 instead hashes these neighbouring existent
names in an attempt to limit DNS record disclosure. This paper
presents a GPU-based attack on NSEC3 that recovered 44% of
names for the internet’s top 20,000 NSEC3-protected DNS zones,
partially invalidating NSEC3’s privacy and security goals.

I. INTRODUCTION

Domain Name System (DNS) traffic is infamously unen-
crypted on UDP port 53, providing adversaries a means of tam-
pering with DNS answers in transit. DNS Security Extensions
(DNSSEC) [1]–[3] was proposed to cryptographically sign
responses to provide origin authentication and integrity such
that upon verification, tampered responses can be discarded.

Requesting non-existent records classically returns Non-
Existent Domain (NXDOMAIN) errors. Given the undifferen-
tiated nature of these responses, an attacker could replay
cryptographically valid NXDOMAIN errors for any records
regardless of existence. To prevent a ”denial of existence”
attack DNSSEC introduced a new record type: NSEC [4].

An NSEC response provides the two lexicographically
neighbouring records of the non-existent record. A query
for ”contact” in the zone {about, blog, forum, www}
would return ”blog NSEC forum A MX TXT”. Trivially
daisy-chaining these ranges together reveals all available
record names. Moreover, NSEC records return a list of record
types that the preceding known-name contains. Ergo, from the
example above it is known that ”blog” has record types A, MX
and TXT. In effect, DNSSEC zones that utilise NSEC become
completely transparent with at most O(n) requests.

In an effort to reduce information leakage and promote
security and privacy, NSEC3 introduced hashing of neighbour-
ing names [5]. Hashing however introduces larger response
sizes and computational overhead. This leads to a schism in
adoption of NSEC vs NSEC3 in the wild.

In this paper, I analyse the recoverability of hashed NSEC3
names to determine the efficacy of NSEC3’s security mea-
sures against zone information leakage using consumer-grade
hardware. After reviewing NSEC3 fundamentals (Section II),
I survey the top 1,000,000 internet domains for their im-
plementation of DNSSEC, NSEC and NSEC3 (Section III).
Subsequently, I share a method for obtaining NSEC3 hashes

blog shop vpn www

01FA 126A 4EAE FB54

NSEC

NSEC3

Fig. 1. NSEC’s ordered loop of names compared to NSEC3’s ordered loop
of name hashes.

(Section IV) followed by the introduction of four hash crack-
ing methods (Section V) and a discussion on their recovery
rates (Section VI). The goal of this paper is to ascertain the
recoverability of NSEC3 zones to allow DNS operators to
evaluate whether it can be relied upon as a privacy and/or
security measure.

II. AUTHENTICATED DENIAL OF EXISTENCE

Queries for non-existent DNSSEC domains need to be
signed and authenticated to prevent ”denial of existence”
attacks by MitM, thus NSEC and NSEC3 were proposed.
These mechanisms are designed to support offline signing.
This process signs all DNS records prior to deployment,
preventing delayed responses due to taxing cryptography at
runtime. This provides the added benefit of allowing the offline
signing secret keys to be air-gapped from the internet-facing
DNS server.

Increasing NSEC3’s security is an iteration variable. Iter-
ations specify the number of times to re-apply the hashing
function. Each iteration increases the complexity and resources
necessary for cracking hashes at the cost of increasing re-
sources necessary for initial signing. Salting hashes is also sup-
ported by NSEC3 but entirely ineffectual [6]. Non-disclosed
salts enhance hash entropy, yet NSEC3 publicly provides them.
Additionally, salts typically increase resistance to ”rainbow
table” attacks but NSEC3 hashes are inherently unique to their
domain as the domain forms the hashed plaintext. NSEC3’s
hash function h per the RFC [5] is defined as:

h(n, s, 0) = f(n ‖ s)

h(n, s, i) = f(h(n, s, i− 1) ‖ s), for i > 0

where n is name, s is a salt, f an arbitrary hash function
and ‖ representing concatenation. The function is called recur-
sively i+1 times, colloquially, the number of iterations. While
the choice of hashing function is arbitrary, currently the only
standard-approved algorithm is SHA-1 despite the availability
of securer alternatives.

III. INTERNET SURVEY

I probed the top 1 million most trafficked sites as provided
by Alexa1. Querying a random 32 character subdomain suffi-
ciently guaranteed hitting a non-existent record, allowing for
the analysis of the prevalence of DNSSEC, NSEC and NSEC3.
Of the domains, only 4% (40,223) employed DNSSEC split
relatively evenly between NSEC and NSEC3 with 46.8%
(18,827) and 53.2% (21,396) respectively. Figure 2 plots
observed NSEC3 salt lengths and iterations.

IV. HASH COLLECTION

Crawling NSEC records involves linear querying of names
canonically until the collected (prior, following) name ranges
form a closed loop. As NSEC3 is instead hash based, random
candidate names are generated and hashed locally (as the
plaintext, salt, iterations and algorithm are known) until a
hash lies within a yet-discovered range based on a technique
proposed by Bernstein [7]. At this point, the nameservers are
queried with this candidate, returning the enclosing range. This
process is repeated until a closed loop of hashes is obtained
for offline cracking. To automate this crawling process I have
written a Python tool which is available for public download
[8]. Crawling the collected 21,396 NSEC3-signed domains
returned 889,599 NSEC3 hashes for offline cracking.

V. HASH CRACKING

With the NSEC3 hashes in hand, an attempt was made
to ”reverse” the hashing process. Given the one-way nature
of hash functions, I iterate through a pool of candidates
and check if hashing with the NSEC3 provided parameters
matches any crawled hashes. By design this is an extremely
computationally expensive process. Four ”NVIDIA GTX 1070
Ti” GPUs were able to provide an aggregate 3 million hash
attempts per second. However the choice of candidate pool
can drastically alter the odds of success. The following four
candidate pools were devised.

A. Bruteforce

Bruteforcing involves testing every combination of char-
acters up to a specified length e.g. for the set of characters
{a, b . . . z}, the set of candidates of length four consists of
{aaaa, aaab . . . zzzz}. This guarantees recovery of hashed
values to that length. Whilst the DNS standard applies no
limits to the legal characters of a subdomain [9], the set
|{’-’, ’ ’, 0 . . . 9, a . . . z}| = 39 was chosen, as other characters
are seldom used in practice. Of note is the inclusion of
the period character as NSEC3 hashes can represent nested

1http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

1 2 4 6 16 20 40 60 100
0%

20%

40%

60%

80%

100%

%
of

O
bs

er
ve

d
D

om
ai

n
C

on
fig

ur
at

io
ns

Iterations
Salt Length

Fig. 2. Logarithmic view of observed NSEC3 iterations and salt lengths.

subdomains e.g. ”test.vpn”. Whilst bruteforcing is com-
prehensive, each additional character adds exponential work-
load O(l39). Considering the available resources, a maximum
bruteforce length of seven characters was chosen providing∑7

n=1 39
n ≈ 141 billion candidates.

B. Dictionary Attack of Known Values

Pre-compiled lists of known subdomains are freely available
online. These are likely to have a large overlap with the
domains associated with the collected NSEC3 hashes as many
domains share common subdomain values e.g. ”www”. Three
popular lists2 were merged and bolstered with subdomains
obtained from crawling the 21,396 NSEC domains identified
above. This resulted in a list of over 41,000,000 candidate
names.

C. Mutated Dictionary Attack of Known Values

Dictionary attacks often have high yields, but can only
provide as many results as it has entries. These pre-compiled
lists are largely representative, but common mutations can be
applied to increase coverage. DNS operators are known to
prepend and append values such as ”test” to subdomains.
While many common such mutations may already exist within
the wordlist, by applying a mutation rule, they can be applied
to all dictionary items. The top 20 most frequently occurring
subdomain mutations were selected in addition to the 5 years
either side of 2022 to combat stale entries within the dictio-
nary. Finally technology acronyms3 such as ”vpn” were added
to form a mutation list of 60 entries which was prepended and
appended to each dictionary item.

2https://wordlists-cdn.assetnote.io/data/manual/best-dns-wordlist.txt
https://gist.github.com/jhaddix/f64c97d0863a78454e44c2f7119c2a6a
https://mega.nz/file/UsJXzITR#TMIFTXnW1zABHfZUIKMPMvA-
c8UvzGWeAd4mg4gGCtQ

3https://en.wikipedia.org/wiki/List of information technology initialisms

D. Dictionary Attack of Plausible Names

DNS names by design are intended to be human created, re-
membered and entered. It naturally follows that DNS operators
will use common terms and words from spoken language to
form names. These common words were also augmented using
the same type of mutations as C above. The dictionary was
further expanded by creating pairs of every entry (delimited
by a hyphen, period and null) to capture plausible names that
are not included in public dictionaries such as ”alumnivpn”
and ”research.files”.

VI. DISCUSSION

Across the four cracking methods, 44% of unique hashes
were recovered within 2.5 days. This is not too dissimi-
lar to previous research achieving a recovery rate of 64%
[10]. The key distinction lies within the fact that prior
research had been performed on domain names within a
TLD zone (e.g. ___.com) rather than subdomains within
domains themselves (e.g. ___.example.com). Not only
are domains limited to a smaller set of characters but
they are less likely to be highly entropic and irrecoverable.
Subdomains within crawled plaintext NSEC data highlight
that many subdomains are highly nested and entropic e.g.
”fd-paypal-201703-2048._domainkey”. These sub-
domains are required for purposes such as email security
and proving domain ownership. Domain names do not need
to cater for these purposes and are thus inherently more
recoverable. It was clear that public subdomain dictionaries
are of high quality, recovering the most hashes within the
shortest period of time. The bruteforce attack recovered an
additional 5.4% of unique hashes followed by 2.1% by the
dictionary mutations and 1.6% by the custom created plausible
dictionary.

VII. CONCLUSION

I presented an attack on sampled NSEC3 records from
the internet (via my open source tool [8]) to discover how
recoverable DNS record names are, and how this impacts
the security and privacy NSEC3 intended to improve. To the
best of my knowledge, this paper presents the first analysis
of cracking NSEC3 subdomain hashes. It was concluded that
44% of NSEC3 hashes could be recovered within 2.5 days of
GPU-based hash cracking. These findings suggest that DNS
operators with a need to keep records private should consider
the recommendations made by RFC 9276 [11] or implement
NSEC ”black lies” [12].

1 2 3 4 5 6 7 8 59 60

10%

20%

30%

40%

Hours of Cracking

C
ra

ck
ed

N
SE

C
3

H
as

he
s

Bruteforce
Dictionary
Mutated Dictionary
Plausible Dictionary

Fig. 3. Names cracked over time.

REFERENCES

[1] S. Rose, M. Larson, D. Massey, R. Austein, and R. Arends, “Dns
security introduction and requirements,” no. 4033, 03 2005. [Online].
Available: https://www.rfc-editor.org/info/rfc4033

[2] ——, “Resource records for the dns security extensions,” no. 4034, 03
2005. [Online]. Available: https://www.rfc-editor.org/info/rfc4034

[3] ——, “Protocol modifications for the dns security extensions,” no. 4035,
03 2005. [Online]. Available: https://www.rfc-editor.org/info/rfc4035

[4] J. Schlyter, “Dns security (dnssec) nextsecure (nsec) rdata
format,” no. 3845, 08 2004. [Online]. Available: https://www.rfc-
editor.org/info/rfc3845

[5] R. Arends, G. Sisson, D. Blacka, and B. Laurie, “Dns security (dnssec)
hashed authenticated denial of existence,” no. 5155, 03 2008. [Online].
Available: https://www.rfc-editor.org/info/rfc5155

[6] A security evaluation of DNSSEC with NSEC3., 01 2010. [Online].
Available: https://theory.stanford.edu/ jcm/papers/dnssec ndss10.pdf

[7] D. Bernstein, “Breaking dnssec,” 2009. [Online]. Available:
http://cr.yp.to/talks/2009.08.10/slides.pdf

[8] H. Mitchell, “Nsec(3) walker,” 09 2022. [Online]. Available:
https://github.com/Harrison-Mitchell/NSEC-3-Walker

[9] R. Elz and R. Bush, “Clarifications to the dns specification,” no. 2181,
07 1997. [Online]. Available: https://www.rfc-editor.org/info/rfc2181

[10] GPU-Based NSEC3 hash breaking, 2014. [Online]. Available:
https://ieeexplore.ieee.org/document/6924218?arnumber=6924218

[11] W. Hardaker and V. Dukhovni, “Guidance for NSEC3 Parameter
Settings,” RFC 9276, Aug. 2022. [Online]. Available: https://www.rfc-
editor.org/info/rfc9276

[12] D. Grant, “Economical with the truth: Making dnssec answers
cheap,” The Cloudflare Blog, 06 2016. [Online]. Available:
https://blog.cloudflare.com/black-lies/

